

Project Title:	RELACS: Replacement of Contentious Inputs in organic farming Systems
Project number:	773431
Project Acronym:	RELACS
Proposal full title:	Replacement of Contentious Inputs in organic farming Systems
Туре:	Research and innovation actions
Work program topics addressed:	SFS-08-2017 Organic inputs – contentious inputs in organic farming

Deliverable No 3.3: Planning tool to match nutrient needs and availabilities in a given case study region (piloted and revised software)

Due date of deliverable:	31 December 2021 (M44)
Actual date of submission:	30 March 2022 (M47)
Version:	vI
Authors:	Else K. Bünemann (FiBL), Marie Reimer (UHOH)

This project has received funding from the *European Union's Horizon 2020 research* and innovation programme under grant agreement No 773431

Project ref. number	773431
Project title	RELACS: Replacement of Contentious Inputs in organic farming Systems

Deliverable title	Planning tool to match nutrient needs and availabilities in a given case study region (piloted and revised software)
Deliverable number	D3.3
Deliverable version	vl
Contractual date of delivery	31.12.2021 (44)
Actual date of delivery	30.03.2022 (M47)
Document status	Submitted
Document version	vl
Online access	
Diffusion	Public
Nature of deliverable	Other (Software)
Workpackage	3
Partner responsible	FIBL
Author(s)	Else K. Bünemann, Marie Reimer
Editor	Joelle Herforth-Rahmé
Approved by	Lucius Tamm
REA Project Officer	Camilla La Peccerella

Nutrient management, fertilizer, agricultural inputs, nutrient
budgets, manure, recycled fertilizers, commercial fertilizers

This project has received funding from the *European Union's Horizon 2020 research* and innovation programme under grant agreement No 773431

Table of Contents

١.	Execu	ıtive summary	4
2.	Introd	duction	5
3.	Metho	odology	5
	3.I	How the tool works	5
	3.2	Data behind the calculations in NutriGap	9
	3.3	Case study Organic Farming in Switzerland (2017)	10
4.	Resul	ts	10
	4. I	Case study Organic Farming in Switzerland (2017)	10
	4.2 animal p	Scenario: doubling of area under organic cereal production in Switzerland without chang production or in use of external nutrient sources	;e in I I
5.	Recor	mmendations	12
	5.I	Further development of the software	12
	5.2	Use of recycled fertilizers in organic agriculture	12

1. Executive summary

Sustainable organic farming closes nutrient cycles and strives for balanced nutrient budgets in order to maintain soil fertility in the long term, and to minimise nutrient losses. To facilitate regional planning of nutrient supply to organic farms, we developed an online planning tool entitled NutriGap. This tool allows organic farmer associations and authorities to calculate a demand-supply-balance for nitrogen, phosphorus and potassium on a regional basis, either in order to evaluate current nutrient supply and improve it by balanced sourcing of external nutrient inputs, or to examine different scenarios of growing areas under organic production. For organic farming in Switzerland, NutriGap clearly identified a deficit in P supply of 4 kg P/ha*year which needs to be addressed by increasing the use of recycled fertilizers in organic agriculture in Switzerland. The tool is publicly available under nutrigap.fibl.org/.

2. Introduction

The European Commission recently set a target of increasing the area of organic agriculture from 7.7% (2018) to 25 % of total farmland by 2030. Given that nutrients removed from the farms in marketed products need to be replaced by biological nitrogen fixation (BNF), recycling and/or permitted external inputs, there is a need to assess the nutrient demand of organic farms across Europe as well as the availability of nutrient sources that might be used on organic farms in future.

In task 3.3 of the project RELACS, a software to assess the current nutrient demand of organic farms in a given region was developed, addressing the three main plant nutrients nitrogen (N), phosphorus (P) and potassium (K). It balances crop nutrient demand based on crop areas entered by the user with manure produced, based on animal numbers entered by the user. The tool then allows matching the nutrient demand of crop production with a range of nutrient inputs, including recycled fertilizers, manures and commercial fertilizers. By changing crop areas and animal numbers, scenarios for future changes in the area under organic farming can be established.

This web-based planning tool is publicly available under nutrigap.fibl.org/. Its main features are described below, and its application to Swiss organic farms is demonstrated, using data made available by BioSuisse.

3. Methodology

3.1 How the tool works

On the start screen (Figure 1), new users can register for free for using the tool. After logging in, the country selection (CH, DK, D, HU, EST) is displayed. In the current version, different regions are stored for each of the five countries. The country selection has no further effects, i.e. stored figures and calculations are the same everywhere. Therefore, the tool can also be applied to other regions or countries that were not part of the RELACS consortium. To facilitate the naming of projects, the selection of certain regions within a country is included in the proposed project name, which can be changed immediately or any time later.

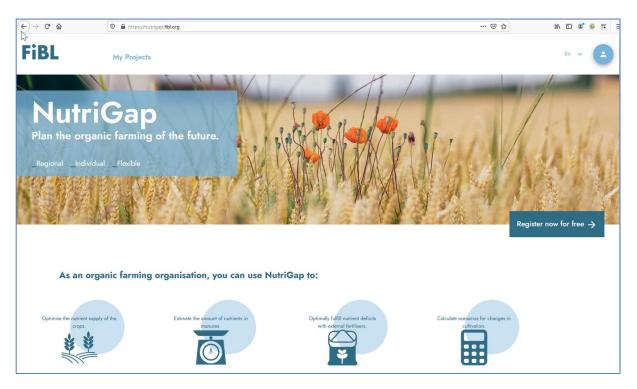


Figure 1: Start screen of the planning tool NutriGap available at nutrigap.fibl.org

The next screen is the crop production tab (Figure 2). Here, one specifies the total agricultural area of the region. The calculations are done on the basis of the summed area of the specified crops. Thus, for planning purposes, the calculation can be carried out for the most important crops occupying e.g. 90% of the area, thus not all crops of minor importance need to be entered.

The total amount of nutrients (in t or kg/ha) needed to optimally supply the crops with nutrients is calculated based on the area of each crop. A typical yield (t/ha) and the associated nutrient requirement (kg/ha) are stored for each crop. The stored values can be seen in the detailed view on the right-hand side as soon as a crop is selected. Additional crops can also be entered, and yields and nutrient requirements can be changed for existing crops. At the end of this step, the nutrient requirement corresponds to the nutrient deficit.

€)→ C @		🖸 🔒 https:/	//nutrigap. fibl.org	g/projects/761f1e7a-	85b0-4ba5-87de	e7b00312f712/pla	ant				⊠ ☆	III\ 🗉 🔹 😸
FiBL	PL	My Proje		uisse StatusQu		ERIM BALANC	CE EXTERI	NAL FERTILIZ	ERS			En 🗸 💶
		N (%)	N (t)	N (kg/ha)	P (%)	P (†)	P (kg/ha)	K (%)	K (t)	K (kg/ha)		Regionen
total nutrient demand			9454	82		2841	25		15971	138		Aargau
sum of farm-internal nutrients			13080	113		1938	17		14603	126		
fulfillment of demand; deficit/surplus		138.4	+ 3626	+ 31	68.2	- 902	- 8	91.4	- 1369	- 12		
				Total agricultu	ral area: 152116		ha	Total area of s	elected crops: 115	928 ha		
						Search		Q				
		Сгор				Acreage	e (ha)	Acreage (%)	Yield (t/ha/Year)	Yield (t/Yea	ar)	
	>	Cereals				14	4140				+	Detailed view of crop
	>	Tuber crops					952				+	Select a crop to see the details.
	>	Oilseed and	fibre crops				729				+	
	>	Grain legum	es				1451				+	
	>	Other arable	crops				46				+	
	>	Green manu	res				0				+	
	>	Grass-clover	leys			80	0938				+	
	>	Mown pastu	res			1	2971				+	

Figure 2: NutriGap tab on plant production, using the example of organic agriculture in Switzerland (2017)

In the animal production tab (Figure 3), the amount of nutrients in manures is calculated based on animal numbers and stored values for nutrients in manures (in kg/year per animal, place or unit). Through these values, indirectly also the usual feeding for a certain animal species is included. In the case of dairy cows, nutrients in manure depend on the selected annual milk yield. As with crops, additional animal species can be entered or existing ones changed. In addition, known nutrient quantities in manures can be entered directly in the category "Direct input of farm-specific nutrients". In this case, the calculation via animal numbers is omitted. At the end of this step, the sum of nutrients in manures and the resulting fulfilment of crop demand in percent, absolute values (t) and in relation to the area of the specified crops (kg/ha) are displayed in the upper area of the tab with a grey background.

D3.3 Planning tool to match nutrient needs and availabilities in a given case study region (piloted and revised software)

~	× 🚯 RELACS - WI	P3 X	😻 NutriGap	×	<table-of-contents> NutriGap</table-of-contents>	×	+							-	٥
←) → ⊂ [™]	🗊 🔒 ht	tps://nutrigap.fibl.org	/projects/761f1e7a	-85b0-4ba5-87	le-e7b00312f712/an	imal					… ⊠ ☆	lii\		3	o 🖭
FiBL	-	ojects / BioSu	uisse StatusQu	uo 2017									En	~	•
	PLANT PROD	DUCTION AN	VIMAL PRODUC		ITERIM BALANC	CE EXTER	AL FERTILIZ								
	N (%)	N (t)	N (kg/ha)	P (%)	P (t)	P (kg/ha)	K (%)	K (t)	K (kg	g∕ha)			Regio	nen	
total nutrient demand		9454	82		2841	25		15971	138				Aarg	jau	
sum of farm-internal nutrients		13080	113		1938	17		14603	126						
fulfillment of demand; deficit/surplus	138.4	+ 3626	+ 31	68.2	- 902	- 8	91.4	- 1369	- 12						
					Search		Q								
		Animal						Number	Unit	^					
		~						159969		+	Detailed view animals	of			
		Beef ca	ttle fattening < 16	0 d				20218	place		Select an animal	to see			
		Beef ca	ttle fattening > 16	0 d				42713	place		the details.				
		Dairy co	ows, 6000 kg ann	ual milk yield				47221	piece						
		Finishin	ig heifers					24886	place						
		Young d	cattle 1-2 years old					8334	place						
		Young d	cattle 160-365 day	s old				6351	place						
		Young o	cattle < 160 days o	old				5790	place	•••					
		Young	cattle over 2 years	old				4456	place						

Figure 3: NutriGap tab on animal production, using the example of organic agriculture in Switzerland (2017)

The next screen is the interim balance tab (Figure 4), where crop nutrient demand and manures are listed per category and in total. In addition, N input via biological N_2 fixation is shown, resulting from the areas under legumes. For atmospheric deposition, 25 kg N/ha is deposited as a default value that can be modified. Unavoidable N losses can be adjusted in a two-step, factorial procedure. First, unavoidable losses in the stable and in the storage of manures are entered as a percentage of total N in manures. Then, the remaining amount of N in manures is corrected for unavoidable losses during application. Since NutriGap works everywhere with contents and amounts of total N, the reduced N utilisation of organic fertilisers compared to mineral fertilisers could also be taken into account here, in addition to losses during application.

In the upper area of the tab, the interim balance of nutrient demand and supply from manures after corrections for N inputs and N losses is now shown.

D3.3 Planning tool to match nutrient needs and availabilities in a given case study region (piloted and revised software)

ELACS - WP3	0	https://nutrigap.fibl.org	/projects/761f1e7a-	85b0-4ba5-87de-	e7b00312f712/ba	lance				⊌	☆	III\ 🖸	(🕲 🕄
FiBL	My	Projects / BioSu	iisse StatusQu	io 2017 🍃								En	~
P	LANT PR	ODUCTION AN	IIMAL PRODUC		ERIM BALANC	CE EXTERNA	AL FERTILIZEI	RS					
	N (%) N (t)	N (kg/ha)	P (%)	P (t)	P (kg/ha)	K (%)	K (t)	K (kg/ha)			Regio	nen
total nutrient demand		9454	82		2841	25		15971	138			Aarg	au
sum of farm-internal nutrients		13080	113		1938	17		14603	126				
interim balance, corrected for N inputs and losses	68.5	+ 6476	+ 56	68.2	- 902	- 8	91.4	- 1369	- 12				
						% N(t)	N(kg/ha)	P(t)	P(kg/ha)	K(t)	K(kg/ha)		
	>	Total nutrient deman	d			9454	82	2841	25	15971	138		
	>	Total nutrients in mai	nures			13080	113	1938	17	14603	126		
	>	Biological nitrogen f	ixation			3026	26						
		Atmospheric deposit	tion			2898	25						
	~	Unavoidable losses (in % of total N ex	cretion)	24	3074	27						
		Unavoidable losses: s	tall, storage		15	i 1962	17						

Figure 4: NutriGap tab showing the interim balance between plant nutrient demand and farm-internal nutrients available from animal production, using the example of organic agriculture in Switzerland (2017)

Finally, in the **external fertilisers** tab (Figure 5), different scenarios can be created for covering the nutrient demand via external fertilisers. Within such a scenario, the interim balance of nutrient demand, manures and corrections for further N inputs and losses is repeated in the upper, grey shaded area. The balance changes through the selection of different nutrient sources in the categories of recycled fertiliser, manures, commercial fertilisers and industrial wastes, for which usual nutrient concentrations are stored. Own fertilisers can be added (+) or existing ones duplicated ("…") and changed.

The balance resulting from the interim balance and entries for external fertilisers is displayed in green if the fulfilment of crop demand is between 90-110%, and coloured red above or below that range. The same colour scheme is also implemented in the previous tabs.

For exporting the project as a pdf, there is an icon to the right of the project name (to the right of the pencil icon). Here, each scenario is listed separately with the resulting balance. Even without export as pdf, each project is saved under the respective user. When deleting the user account, however, the data would be deleted. Therefore, finished projects should be exported as pdf.

D3.3 Planning tool to match nutrient needs and availabilities in a given case study region (piloted and revised software)

→ Cª 🏠		🖲 🔒 https://n	utrigap.fibl.org/proj	jects/761f1e7a-8	5b0-4ba5-87de-e	7b00312f712/fu	lfillment/0					•••	⊠ ☆	III\ 🗊 🌒 🍥
iBL	PLAN	My Project	ts / BioSuiss	e StatusQue			CE EXT	TERNAL FER	RTILIZER	S				En 🗸
		N (%)	N (t)	N (kg/ha)	P (%)	P (t)	P (kg/	'ha) K	(%)	K (t)	K (kg/ha)		Regionen
Interim balance, corrected inputs and losses	d for N	68.5	+ 6476	+ 56	68.2	- 902	- 8	91	4	- 1369	- 12			Aargau
Sum external fertilizers			1935	17		440	4			1661	14			
Result balance		157.5	+ 8316	+ 72	82.3	- 503	- 4	100	0.0	+ 3	+ 0			
		Fertilizers	R SCENARIOS	Exte	rnal fertilizer sc Amount	enario: Status0 Unit		Search N (kg/ha)	P (t)	Q P (kg/ha)	K (t)	K (kg/ha)		^
			R SCENARIOS	Exte			Quo 2017 N (t)	Search N (kg/ha)	P (t)	Q P (kg/ha)	K (t)	K (kg/ha)	,	^
	~	Fertilizers Recycled fertili	iser	Exte	Amount	Unit	N (t)	N (kg/ha)		P (kg/ha)			+	 Detailed view of nutrient source
	~	Fertilizers	iser	Exte					P (t) 22.3		к (†) 72.0	K (kg/ha) 0.6	+	source Select a nutrient source to see
	~	Fertilizers Recycled fertili	i ser elwert CH)	Exte	Amount	Unit	N (t)	N (kg/ha)		P (kg/ha)				source
	~	Fertilizers Recycled fertili Kompost (Mitte	iser slwert CH) d (Kompogas)	Exte	Amount 17135	Unit t	N (t) 119.9	N (kg/ha)	22.3	P (kg/ha) 0.2	72.0	0.6		source Select a nutrient source to see
	~	Fertilizers Recycled fertili Kompost (Mitte Digestate liquid	slwert CH) d (Kompogas) l (average CH)	Exte	Amount 17135 39521	Unit †	N (t) 119.9 158.1	N (kg/ha) 1.0 1.4	22.3 35.6	P (kg/ha) 0.2 0.3	72.0	0.6	••••	source Select a nutrient source to see
	*	Fertilizers Recycled fertili Kompost (Mitte Digestate liquid Digestate solid Digested slurry	slwert CH) d (Kompogas) l (average CH)	Exte	Amount 17135 39521 2625	Unit t t	N (1) 119.9 158.1 15.8	N (kg/ha) 1.0 1.4 0.1	22.3 35.6 3.4	P (kg/ha)	72.0 130.4 11.0	0.6	••••	source Select a nutrient source to see
	~	Fertilizers Recycled fertili Kompost (Mitte Digestate liqui Digestate solid Digested slurry Digested slurry	i ser olwert CH) d (Kompogas) i (average CH)	Exte	Amount 17135 39521 2625 50387	Unit t t t	N (t) 119.9 158.1 15.8 171.3	N (kg/ha) 1.0 1.4 0.1 1.5	22.3 35.6 3.4 30.2	P (kg/ha) 0.2 0.3 0.0 0.3	72.0 130.4 11.0 151.2	0.6 1.1 0.1 1.3	••••	source Select a nutrient source to see
	~	Fertilizers Recycled fertili Kompost (Mitte Digestate liquid Digestate solid Digested slurry Digested slurry	iser slwert CH) d (Kompogas) l (average CH) y y (liquid fraction)	Exte	Amount 17135 39521 2625 50387 39520	Unit t t t t t	N (1) 119.9 158.1 15.8 171.3 142.3	N (kg/ha)	22.3 35.6 3.4 30.2 19.8	P (kg/ha)	72.0 130.4 11.0 151.2 102.8	0.6 1.1 0.1 1.3 0.9	••••	source Select a nutrient source to see

Figure 5: NutriGap tab showing an external fertilizer scenario, using the example of organic agriculture in Switzerland (2017)

3.2 Data behind the calculations in NutriGap

In principle, NutriGap is based on the data from the Swiss demand-supply balance (Suisse-Bilanz, Wegleitung Suisse-Bilanz Ed. 1.16). Further information available at

https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen/oekologischerleistungsnachweis/ausgeglichene-duengerbilanz.html (accessed on 30.03.2022)

The «Suisse-Bilanz» is based on the guidelines for the fertilisation of agricultural crops in Switzerland (GRUD 2017, <u>grud.ch</u>). The data are therefore not specific to organic farming. Crop nutrient demand generally corresponds to the fertilisation recommendation and not necessarily to nutrient export, since for some crops, e.g. biological N-fixation or soil N mineraliation are also taken into account. In contrast to Suisse-Bilanz, NutriGap calculated the balance not only for N and P, but also for K.

In NutriGap, data from Tab. 3 (meadows & pastures), Tab. 4 (arable crops), Tab. 5 (vegetables) and Tab. 6 (permanent crops) from the Suisse-Bilanz guidelines are stored in the plant production tab. Tab. 1 (nutrient accumulation) and Tab. 2a (correction of nutrient accumulation according to milk yield) from the Suisse-Bilanz guidelines are stored in the animal production tab.

Nitrogen input through biological N-fixation is displayed in the interim balance tab. For grain legumes, grain silage with legumes and legume green manure, it is based on the N balance according to the "Faustzahlen für den Ökologischen Landbau" (KTBL, 2015). Only for soy bean, the negative N balance was replaced by 0. For artificial meadows (leys) and mown pastures, the calculation was carried out according to Spiess & Liebisch (2020; Nährstoffbilanz der schweizerischen Landwirtschaft für die Jahre 1975 bis 2018. Agroscope Science Nr. 100. https://doi.org/10.34776/as100g). A clover share of 30% was

assumed, with an above-ground fixation capacity of 4.15 kg N/ha per percent clover share. By multiplying the resulting above-ground N input from fixation by a factor of 0.4, only the non-harvested, largely below-ground N input was taken into account, since the above-ground N input from fixation is represented in the nutrient input from animal production.

In the external fertiliser tab, nutrient contents of various nutrient sources were compiled (GRUD Kap. 4, Tab. 6 und Tab. 8; Betriebsmittelliste der Schweiz (FiBL, 2020); table values in the Excel tool NutriGadget (Reimer et al. 2020, NutriGadget-Farm gate nutrient budgets for organic farming (https://orgprints.org/id/eprint/38025/)).

3.3 Case study Organic Farming in Switzerland (2017)

Data on organically cropped areas and organic animal production in Switzerland was available from BioSuisse for the year 2017. This data was entered in NutriGap and the outcome compared to results of a previous detailed study on nutrient budgets of 973 organic farms, corresponding to about 15% of all organic farms in Switzerland. In addition, data on inputs of recycled fertilizers and manure imported to organic farms was available from the database "Hoduflu".

4. Results

4.1 Case study Organic Farming in Switzerland (2017)

The average crop N demand of 82 kg N/ha calculated by NutriGap based on all crop areas under organic farming in Switzerland in 2017 (Figure 6) was similar to the average crop N demand of 973 organic farms found in the detailed study (Table I). P demand was slightly higher as calculated by NutriGap (25 kg P/ha) compared to P demand found in the detailed study (22 kg P/ha). K demand was not calculated in the detailed study and the output of NutriGap can therefore not be validated.

Total farm-internal nutrients from animal production, i.e. in manures, averaged 113 kg N/ha and 17 kg P/ha (Figure 6), which again is similar to the values found in the detailed study (data not shown).

The resulting interim balance, where N inputs from BNF and atmospheric deposition as well as unavoidable N losses from animal production have been taken into account, was positive for N (56 kg N/ha) and negative for P (-8 kg P/ha) and K (-12 kg P/ha). When taking known inputs of recycled fertilizers and imported farmyard manures into account, the balance turned more positive for N, less negative for P and balanced for K (Figure 6).

The resulting P deficit of 4 kg P/ha for all organic farms in Switzerland was similar to the average P deficit observed in the detailed study of 973 organic farms (Table I). For N, the comparison is not straightforward since values in the detailed study are given as available N, thus reducing total N by the fraction of manure N that is typically unavailable to plants. Assuming only 60% of N in farm-internal nutrients being available to plants would result in a N deficit that is roughly similar to the findings in the detailed study.

iBL		My Projec	ts / BioSuiss	se StatusQuo	2017 🥖	B								En 🗸
	PLA	NT PRODUCT	ΓΙΟΝ ΑΝΙΜ	AL PRODUCT	ION INTER	RIM BALANC	E EXT	ERNAL FE	RTILIZER	S				
		N (%)	N (t)	N (kg/ha)	P (%)	P (t)	P (kg/h	a) K	(%)	K (t)	K (kg/ha	a)		Regionen
Interim balance, correct inputs and losses	cted for N	68.5	+ 6476	+ 56	68.2	- 902	- 8	91.	4	- 1369	• 12			Aargau
Sum external fertilizers			1935	17		440	4			1661	14			
Result balance		157.5	+ 8316	+ 72	82.3	- 503	- 4	10	0.0	+ 3	+ 0			
EACK TO OVERVIE	W ON EX	TERNAL FERTILIZE	ER SCENARIOS											
				Exte	rnal fertilizer sce	enario: StatusQ	uo 2017	Search		Q				
		Fertilizers			Amount	Unit	N (t)	N (kg/ha)	P (t)	P (kg/ha)	K (t)	K (kg/ha)	^	
	~	Recycled fertil	iser										+	Detailed view of nutrient source
		Kompost (Mitte	elwert CH)		17135	t	119.9	1.0	22.3	0.2	72.0	0.6		Select a nutrient source to see
		Digestate liqui	id (Kompogas)		39521	t	158.1	1.4	35.6	0.3	130.4	1.1		the details.
		Digestate solic	Line Chil		2625		15.8	0.1	3.4	0.0	11.0	0.1		

Figure 6: Resulting nutrient balance of organic agriculture in Switzerland after accounting for nutrients imported to Swiss organic farms with recycled fertilizers and imported manures (2017)

Table I: Average crop N and P demand as well as available N (Navail) and P balance of 973 Swiss organic farms (2017);
means ± standard deviation

No. of farms	N demand	Navail balance		P demand P balance		
	kg / ha	in % of N demand	in kg / ha	kg / ha	in % of P demand	kg / ha
973	81 ± 29	74 ± 18	-22 ± 19	22 ± 7	82 ± 20	-4 ± 4

4.2 Scenario: doubling of area under organic cereal production in Switzerland without change in animal production or in use of external nutrient sources

Once a project with all the data from a given region has been set up, it can be duplicated, renamed and modified in order to assess the effects of changes in land use on the nutrient balance. For example, if the area under organic cereal production in Switzerland would double without any change in animal production, the balance of N demand and N supply would decrease from 31 kg N/ha (Figure 2) to 16 kg N/ha (Figure 7), and the P and K deficits would increase to -9 kg P/ha and -15 kg K/ha.

FiBL	My Projects / BioSuisse Getreidex2									
	PLANT PRODU	CTION AN	IMAL PRODUCTION INTERIM BALANCE			E EXTERN	EXTERNAL FERTILIZERS			
	N (%)	N (t)	N (kg/ha)	P (%)	P (t)	P (kg/ha)	К (%)	K (t)	K (kg/ha)	
total nutrient demand		10990	85		3158	24		16493	127	
sum of farm-internal nutrients		13080	101		1938	15		14603	113	
fulfillment of demand; deficit/surplus	119.0	+ 2089	+ 16	61.4	- 1219	- 9	88.5	- 1890	- 15	
			Total agricultural area: 152116			ha	Total area of selected crops: 129668 ha			

Figure 7: Comparison of nutrient demand and farm-internal nutrients if the area under organic cereal production in Switzerland would double without any change in animal production.

5. Recommendations

5.1 Further development of the software

The first version of NutriGap presented here is intuitive and functional, but there are also many ways in which NutriGap could be developed further:

- I. Import of crop areas and animal numbers instead of manual entries
- 2. Map-based, flexible selection of the region in connection with region-specific data for e.g. typical yields, nutrient uptake and animal categories, replacing current standard values from Switzerland.
- 3. Simplification of crop and animal lists
- 4. Map-based presentation of available external fertilizers with coordinates. This would allow optimization of transport distances and could be further developed into a market place of recycled fertilizers.

5.2 Use of recycled fertilizers in organic agriculture

For organic farming in Switzerland, NutriGap clearly identified a deficit in P supply of 4 kg P/ha*year which needs to be addressed by increasing the use of recycled fertilizers in organic agriculture in Switzerland.